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Abstract: In this paper, the fractional integration problem of fractional rational functions is studied based on 

Jumarie’s modified Riemann-Liouville (R-L) fractional calculus and a new multiplication of fractional analytic 

functions. The main methods we used are the chain rule for fractional derivatives and the partial fraction method. 

On the other hand, we give some examples to illustrate how to calculate fractional integrals of some fractional 

rational functions. In fact, these results are extensions of the results in traditional calculus. 
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I.   INTRODUCTION 

Fractional calculus is the theory of non-integer derivative and integral. However, the definition of fractional derivative is 

not unique. Common definitions include Riemann Liouville (R-L) fractional derivative, Caputo fractional derivative, 

Grunwald Letnikov (G-L) fractional derivative and Jumarie’s modification of R-L fractional derivative [1-5]. In the past 

decades, fractional calculus has been widely used in continuum mechanics, quantum mechanics, electronic engineering, 

fluid science, viscoelasticity, control theory, dynamics, financial economics and other fields [6-14]. 

In this paper, based on the Jumarie type of modified R-L fractional calculus and a new multiplication of fractional 

analytic functions, the fractional integration problem of fractional rational functions is studied. The major methods used in 

this article are the chain rule for fractional derivatives and the partial fraction method. In addition, some examples are 

provided to illustrate our methods. In fact, these results we obtained are generalizations of those in classical calculus.  

II.   DEFINITIONS AND PROPERTIES 

Firstly, the fractional calculus used in this paper is introduced. 

Definition 2.1 ([15]): Let      , and    be a real number. The Jumarie type of Riemann-Liouville (R-L)  -fractional 

derivative is defined by 
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And the Jumarie′s modified R-L  -fractional integral is defined by 
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where  ( ) is the gamma function.  

Proposition 2.2 ([16]):  If            are real numbers and        then 
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In the following, we introduce the definition of fractional analytic function. 

Definition 2.3 ([17]): Suppose that     , and    are real numbers for all  ,    (   ), and      . If the function 

   [   ]    can be expressed as an  -fractional power series, that is,   ( 
 )  ∑

  

 (    )
(    )

   
    on some open 

interval containing   , then we say that   ( 
 ) is  -fractional analytic at   . In addition, if    [   ]    is continuous on 

closed interval [   ] and it is  -fractional analytic at every point in open interval (   ), then    is called an  -fractional 

analytic function on [   ]. 

In the following, a new multiplication of fractional analytic functions is introduced. 

Definition 2.4 ([15]): Let      , and    be a real number. If   ( 
 )  and    ( 

 )  are two  -fractional analytic 

functions defined on an interval containing    , 
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Then we define 
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Equivalently, 
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Definition 2.5: Let   ( 
 ) and   ( 

 ) be two  -fractional analytic functions defined on an interval containing   . If 

  ( 
 )    ( 

 )   , then we say that   ( 
 ) is the   reciprocal of    ( 

 ), and is denoted by [   ( 
 )]   . 

Definition 2.6 ([18]): Suppose that        and   ( 
 ),    ( 

 ) are  -fractional analytic functions defined on an 

interval containing    , 
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The compositions of   ( 
 ) and   ( 

 ) are defined by 
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Definition 2.7 ([18]): Let        If   ( 
 ),   ( 

 ) are two  -fractional analytic functions satisfies 
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Then   ( 
 ),   ( 

 ) are called inverse functions of each other. 

Some fractional analytic functions are introduced below. 
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Definition 2.8 ([18]): If      , and      are real numbers. The  -fractional exponential function is defined by 
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And the  -fractional logarithmic function    ( 
 ) is the inverse function of   ( 

 )  

Next, we introduce fractional rational function. 

Definition 2.9: Let      , and     . Then 
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is called an  -fractional polynomial function of degree  . Furthermore, if    ( 
 )  and   ( 

 )  are two  -fractional 

polynomial functions,   ( 
 )   , then   ( 

 )    ( 
 ) [  ( 

 )]    is called an  -fractional rational function. 

Theorem 2.10 (chain rule for fractional derivatives) ([18]): If      ,      are real numbers, and   ( 
 ),   ( 

 ) 

are  -fractional analytic functions at    . Then 
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III.   RESULTS AND EXAMPLES 

In the following, we obtain the main results in this article. 

Theorem 3.1:  Let       be real numbers,          and      . Then the  -fractional intregral 
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Proof  Since by chain rule for fractional derivatives, 
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It follows that the desired result holds.                                                                                     Q.e.d. 

Theorem 3.2:  Suppose that       are real numbers,   is a positive integer,              and      . Then 

the  -fractional intregral 
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Proof  Using chain rule for fractional derivatives yields 
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Therefore, the desired result holds.                                                                                                                    Q.e.d. 

Next, we give two examples to illustrate how to use Theorems 3.1 and 3.2 and the partial fraction method to calculate the 

fractional integrals of some fractional rational functions. 

Example 3.3: Let      and      . Find the α-fractional integral 
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Solution By partial fraction method, the α-fractional rational function 
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It follows from Theorem 3.1 that  
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Example 3.4: If      and      . Find the α-fractional integral 
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Solution Using partial fraction method yields the α-fractional rational function 
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It follows from Theorems 3.1 and 3.2 that  
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IV.   CONCLUSION 

Based on Jumarie’s modified R-L fractional calculus and a new multiplication, the fractional integral of fractional rational 

functions is studied. We use the chain rule for fractional derivatives and the partial fraction method to calculate some 

fractional integrals. In fact, these results are the generalizations of classical calculus results. In the future, we will also use 

these methods to expand our research field to engineering mathematics and fractional differential equations. 
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